Question 32554

For motion over inclined plane, projection on axis, which is perpendicular to the surface of the plane gives: $N=m g \cos \varphi, \varphi$ is the angle of inclination.
Projection over axis, parallel to the plane, together with $2^{\text {nd }}$ Newton's law ($\vec{F}=m \vec{a}$) gives:
$m a=m g \sin \varphi-F_{f} . \quad F_{f}$ is the friction force, which is calculated as $F_{f}=\mu N=\mu m g \cos \varphi(\mu$ is the friction coefficient, $\mu=0.25$).
Hence, $\quad a=g \sin \varphi-\frac{F_{f}}{m}=g \sin \varphi-\mu g \cos \varphi=3.95 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

