Question 32554

For motion over inclined plane, projection on axis, which is perpendicular to the surface of the plane gives: $N = mg \cos \varphi$, φ is the angle of inclination.

Projection over axis, parallel to the plane, together with 2^{nd} Newton's law ($\vec{F} = m\vec{a}$) gives: $ma = mg \sin \varphi - F_f$. F_f is the friction force, which is calculated as $F_f = \mu N = \mu mg \cos \varphi$ (μ is the friction coefficient, $\mu = 0.25$).

Hence, $a=g\sin\varphi - \frac{F_f}{m} = g\sin\varphi - \mu g\cos\varphi = 3.95\frac{m}{s^2}$.