An object is dropped from a height h. During the last second of its journey the object travels a distance $9 \mathrm{~h} / 25$. Then, what is the value of ' h '?

Solution:

The equation of motion for the object on the path of all way:

$$
h=\frac{g t^{2}}{2}=>t=\sqrt{\frac{2 h}{g}}(1)-\text { time of the journey }
$$

The equation of motion for an object that flies time $t-1$ (after one second object will end movement):

$$
\begin{gathered}
h-h_{1}=\frac{g(t-1)^{2}}{2} ; h_{1}=\frac{9}{25} h \\
h-\frac{9}{25} h=\frac{g(t-1)^{2}}{2} \\
\frac{16}{25} h=\frac{g(t-1)^{2}}{2} \\
\sqrt{\frac{16}{25}} h=\sqrt{\frac{g(t-1)^{2}}{2}} \\
\frac{4}{5} \sqrt{h}=\frac{\sqrt{g}(t-1)}{\sqrt{2}}(2)
\end{gathered}
$$

(1) in (2): $\frac{4}{5} \sqrt{h}=\frac{\sqrt{g}\left(\sqrt{\frac{2 h}{g}}-1\right)}{\sqrt{2}}$

$$
\begin{gathered}
4 \sqrt{2} \sqrt{h}=5(\sqrt{2 h}-\sqrt{g}) \\
\sqrt{h}(5 \sqrt{2}-4 \sqrt{2})=5 \sqrt{g} \\
\sqrt{h}=\frac{5 \sqrt{g}}{\sqrt{2}}=>h=\frac{5 g}{2}=\frac{5 * 9.8 \frac{\mathrm{~m}}{\sec ^{2}}}{2}=24.5 \mathrm{~m}
\end{gathered}
$$

Answer: $h=24.5 m$

