A small hole of radius 0.1 mm is present at the bottom of a tumbler. Up to what maximum height may water be stored inside the tumbler so that no water leaks out through the whole? [given that the surface tension of water is $7.1 \times 10^{\wedge}(-2) \mathrm{N} / \mathrm{m}$]

Solution

We are given:

$$
\begin{gathered}
r=0.1 \mathrm{~mm}=10^{-4} \mathrm{~m} \\
T=7.1 * 10^{-2} \mathrm{~N} / \mathrm{m}
\end{gathered}
$$

Force of surface tension can be calculated as:

$$
F_{\text {tension }}=2 \pi r * T
$$

Force on water surface due to weight of the water in a tumbler is:

$$
\begin{gathered}
F_{\text {weight }}=p * \pi r^{2} \\
p=\rho * g * h
\end{gathered}
$$

For maximum height:

$$
\begin{gathered}
F_{\text {weight }}=F_{\text {tension }} \\
2 \pi r T=\rho g h_{\text {max }} \pi r^{2}
\end{gathered}
$$

Thus:

$$
h_{\max }=\frac{2 T}{\rho g r}
$$

Calculation:

$$
h_{\max }=\frac{2 T}{\rho g r}=\frac{2 * 7.1 * 10^{-2}}{1000 * 9.8 * 10^{-4}} \approx \mathbf{0 . 1 4 5} \mathbf{m}=14.5 \mathrm{~cm}
$$

Answer: $\mathbf{0 . 1 4 5} \mathbf{~ m}$

