Question 32403

For an inclined plane,

1) $N=m g \cos \theta$
2) $m a=F-F_{f}-m g \sin \theta$
, where F_{f} is the friction force, which is equal to $F_{f}=\mu N=\mu m g \cos \theta$ (according to first equation). μ Is the friction coefficient, one needs to find.

Hence, from equation 2):

$$
a=\frac{F-\mu m g \cos \theta-m g \sin \theta}{m}
$$

Let us convert given force and mass into Newtons and kilograms:

$$
m=120 \mathrm{lb}=54.36 \mathrm{~kg} ; F=86 \mathrm{lbs}=382.2 \mathrm{~N}
$$

Since the motion is with constant speed, acceleration is zero, which yields
$F-\mu m g \cos \theta-m g \sin \theta=0 \Rightarrow \mu=\frac{F-m g \sin \theta}{m g \cos \theta}$, which after calculation gives $\mu \approx 0.399$.

