Rocket has initial velocity of $35 \mathrm{~ms}^{-1}$. Acceleration is $5.0 \mathrm{~ms}^{-2}$. Engine break at high 20 km . What the maximum height achieved by the rocket?

Solution.

$$
\begin{gathered}
v_{i}=35 \frac{\mathrm{~m}}{\mathrm{~s}} ; a=5.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} ; h_{1}=20 \mathrm{~km}=20 \cdot 10^{3} \mathrm{~m}, g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
h_{\max }-?
\end{gathered}
$$

The height h_{1} achieved by the rocket with the engine running:

$$
h_{1}=\frac{v_{1}^{2}-v_{i}^{2}}{2 a} ;
$$

v_{i} - the initial velocity of the rocket;
v_{1} - the final velocity of the rocket when it moved with the engine running;
a - the acceleration of the rocket.

$$
v_{1}^{2}=2 a h_{1}+v_{i}^{2} .
$$

The height h_{2} achieved by the rocket without the engine running:

$$
h_{2}=\frac{v_{2}^{2}-v_{1}^{2}}{-2 g} ;
$$

v_{1} - the initial velocity of the rocket when the engine break;
$v_{2}=0-$ the final velocity of the rocket when it achieved the maximum high;
g - the gravity acceleration.

$$
\begin{gathered}
h_{2}=\frac{0-v_{1}^{2}}{-2 g}=\frac{-v_{1}^{2}}{-2 g}=\frac{v_{1}^{2}}{2 g} ; \\
h_{2}=\frac{2 a h_{1}+v_{i}^{2}}{2 g} .
\end{gathered}
$$

The maximum height achieved by the rocket:

$$
\begin{gathered}
h_{\max }=h_{1}+h_{2} \\
h_{\max }=h_{1}+\frac{2 a h_{1}+v_{i}^{2}}{2 g} . \\
h_{\max }=20 \cdot 10^{3} \mathrm{~m}+\frac{2 \cdot 5.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 20 \cdot 10^{3} \mathrm{~m}+\left(35 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=30267 \mathrm{~m}
\end{gathered}
$$

Answer: The maximum height achieved by the rocket is $h_{\max }=30267 \mathrm{~m}$.

