Question 32301

Let the time for moving upwards until full stop be t_{s}. If at the moment of stop velocity is zero, then $v=v_{0}-g t_{s}=0 \Rightarrow t_{s}=\frac{v_{0}}{g}$. The maximum height is $h=v_{0} t_{s}-\frac{g t_{s}^{2}}{2}=\frac{v_{0}^{2}}{2 g}$. Moving down (from the point of stop - maximum height point) is with no initial velocity, hence the law of motion is $y(t)=h-\frac{g t^{2}}{2}$, so the time to move down is $t_{2}=\sqrt{2 \frac{h}{g}}$. Plugging $h=\frac{v_{0}^{2}}{2 g}$ into latter formula gives $t_{2}=\sqrt{\frac{v_{0}^{2}}{g^{2}}}=\frac{v_{0}}{g}$. Hence, total time of movement is $t=t_{s}+t_{2}=2 \frac{v_{0}}{g}$.
Now, let us find the time needed to move from maximum height point to point of 5 meters above the ground. Distance to travel is $h-5$, hence time is
$t=\sqrt{2 \frac{(h-5)}{g}}=\sqrt{2 \frac{\left(\frac{v_{0}^{2}}{2 g}-5\right)}{g}}$. The velocity at that moment of time is
$v=g t=\sqrt{2 g\left(\frac{v_{0}^{2}}{2 g}-5\right)}=22.9 \frac{\mathrm{~m}}{\mathrm{~s}}$.

