Question 32258

Since the rocket rises with constant acceleration, directed upwards, the velocity at given moment of time is $v(t)=a t$.
a) The y-coordinate of the rocket as a function of time is $y(t)=\frac{a t^{2}}{2}$. Hence, for given y, time to move to it is $t_{1}=\sqrt{2 \frac{y}{a}}$. Thus, according to first formula, at that moment of time velocity is $v=a t_{1}=a \sqrt{\frac{2 h}{a}}=\sqrt{2 h a}$. This relation connects velocity with height and acceleration. Knowing that for $h=3.3 \mathrm{~m}$ velocity is $v=28 \frac{\mathrm{~m}}{\mathrm{~s}}$, obtain $a=\frac{v^{2}}{2 h}=118.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
b) Since $y(t)=\frac{a t^{2}}{2}$, for $t=0.1 \mathrm{~s}, \quad y=118.8 \cdot \frac{(0.1)^{2}}{2}=0.594 \mathrm{~m}$.
c) Knowing that $\quad v(t)=a t$, for $t=0.1 \mathrm{~s}, \quad v=118.8 \cdot 0.1=11.88 \frac{\mathrm{~m}}{\mathrm{~s}}$.

