Question 32221

Maximum height is achieved at the half of time of movement. At this point $h_{\max }=\frac{v_{0}^{2} \sin ^{2} \theta}{2 g}$, where θ is the angle at which object was thrown. If maximum possible height is 25 m , then using last formula it is possible to find the angle under which ball must be thrown not to hit the ceiling (25m).

$$
\begin{aligned}
& h_{\max }=\frac{v_{0}^{2} \sin ^{2} \theta}{2 g} \Rightarrow \sin ^{2} \theta=\frac{2 g h_{\text {max }}}{v_{0}^{2}}=0.3125 \text {, which gives the angle } \\
& \sin \theta=0.56, \theta=34.05 \text { degrees } .
\end{aligned}
$$

The horizontal distance is $l=\frac{v_{0}^{2}}{g} \sin 2 \theta=148.45 \mathrm{~m}$.

