An electron of mass $9.1 \times 10^{\wedge}$-31 kilograms inside a special vacuum chamber at Caltech undergoes acceleration of $3 \times 10^{\wedge} 4 \mathrm{~m} / \mathrm{sec}^{\wedge} 2$ caused by an electrostatic force. Determine the force applied to the electron.

Newton's second law of motion:
The acceleration of a body is directly proportional to, and in the same direction as, the net force acting on the body, and inversely proportional to its mass. Thus,

$$
F=m a
$$

where F is the net force acting on the object, m is the mass of the object and a is the acceleration of the object.

Therefore:

$$
F=9.1 * 10^{-31} * 3 * 10^{4} \frac{\mathrm{~m}}{\sec ^{2}}=2.73 * 10^{-26} \mathrm{~N}
$$

Answer: $F=2.73 * 10^{-26} \mathrm{~N}$

