A thin walled cylinder of mass m height h and cross section area S is filled with gas and floats on the surface of water. As a result to leakage from lower part of cylinder the depth of its submergence has increased by a. Determine the initial pressure x in cylinder if initial atm pressure is p atm.

Solution:

Connection between the pressures p1 and p2 ($p_{1}=p_{\text {initial }}$ - pressure before entering water, p_{2} pressure after entering water).

Mendeleev-Clapeyron equation for gas in the first and in the second case:

$$
\begin{gather*}
p_{1} V=v R T ; V=h * S(1) \\
p_{2} V=v R T ; V=(h-a) * S(2) \\
(1)=(2): p_{1} h=p_{2}(h-a) \\
p_{2}=p_{1}\left(\frac{h}{h-a}\right)\left(2^{\prime}\right)
\end{gather*}
$$

Newton's second law for the cylinder:

$$
\begin{gathered}
F_{a t m}+m g-F_{g a s}=0 \\
F_{a t m}=p * S \\
F_{g a s}=p_{2} S
\end{gathered}
$$

(2') and (5) and (4) in (3): $p S+m g-p_{1}\left(\frac{h}{h-a}\right) S=0$

$$
\begin{gathered}
p_{1}\left(\frac{h}{h-a}\right)=\frac{m g}{S}+p \\
p_{1}=\frac{\frac{m g}{S}+p}{\frac{h}{h-a}}=\left(\frac{m g}{S}+p\right)\left(1-\frac{a}{h}\right)
\end{gathered}
$$

Answer: initial pressure $p_{1}=x=\left(\frac{m g}{s}+p\right)\left(1-\frac{a}{h}\right)$.

