A body is thrown vertically upward such that it crosses the same height after 2 seconds and after 8 seconds. What is the value of the mentioned height?

The general equation is

$$
\begin{gathered}
y(t)=v_{0} t-\frac{g t^{2}}{2} \\
t_{1}=2 s ; t_{2}=2 s \\
y\left(t_{1}\right)=v_{0} t_{1}-\frac{g t_{1}^{2}}{2} \\
y\left(t_{2}\right)=v_{0} t_{2}-\frac{g t_{2}^{2}}{2}
\end{gathered}
$$

We express the initial velocity from the two equations

$$
\begin{aligned}
& y\left(t_{1}\right)=v_{0} t_{1}-\frac{g t_{1}{ }^{2}}{2}->v_{0}=\frac{y\left(t_{1}\right)+\frac{g t_{1}{ }^{2}}{2}}{t_{1}} \\
& y\left(t_{2}\right)=v_{0} t_{2}-\frac{g t_{2}{ }^{2}}{2}->v_{0}=\frac{y\left(t_{2}\right)+\frac{g t_{2}^{2}}{2}}{t_{2}} \\
& ->\frac{y\left(t_{1}\right)+\frac{g t_{1}{ }^{2}}{2}}{t_{1}}=\frac{y\left(t_{2}\right)+\frac{g t_{2}^{2}}{2}}{t_{2}}
\end{aligned}
$$

Considering

$$
y\left(t_{1}\right)=y\left(t_{2}\right)=h
$$

We have $h=\frac{g\left(t_{2}{ }^{2} t_{1}-t_{1}{ }^{2} t_{2}\right)}{2\left(t_{2}-t_{1}\right)}=\frac{9.81(64 * 2-8 * 4)}{2(8-2)}=78.48 \mathrm{~m}$

