Task. A train is moving at a constant speed on a surface inclined upward at 15.0° with the horizontal and travels $d=300$ meters in $t=5$ seconds. Calculate the horizontal velocity of the train at the end of 3 seconds.

Solution. The surface is inclined upward at 15.0° with the horizontal, therefore the horizontal velocity of the train at time t is equal to

$$
v_{\text {hor }}(t)=v(t) \cos 15^{\circ} .
$$

By assumption the speed of the train along surface is constant, and so it is equal to

$$
v=\frac{d}{t}=\frac{300}{5}=60 \mathrm{~m} / \mathrm{s} .
$$

Hence

$$
v_{\text {hor }}=v \cos 15^{\circ}=60 * 0.96593=57.95554 \approx 58 \mathrm{~m} / \mathrm{s}
$$

and it does not depend on t. Therefore at the end of 3 seconds, the horizontal velocity will be equal to $58 \mathrm{~m} / \mathrm{s}$.

Answer. $58 \mathrm{~m} / \mathrm{s}$.

