2 trains A and B are moving in same direction at same track with B ahead of A with speed u and train A with speed $v(v>u)$. the driver of A sees B and starts decelerating with ' a '. What is the min distance to avoid collision?

Relative speed equals:

$$
v_{12}=(v-a t)-u
$$

d_{0} - initial distance, t-time, a - deceleration
min distance to avoid collision if $v_{12}=0=>d=0$
$v_{12}=0 \quad \Rightarrow \quad t=\frac{v-u}{a}$
Distance between trains at moment of time t :

$$
d=d_{0}-(v-u) t+\frac{a t^{2}}{2}=d_{0}-\frac{(v-u)^{2}}{2 a}
$$

min distance if $d=0$:

$$
d_{0}=\frac{(v-u)^{2}}{2 a}
$$

Answer: $d_{0}=\frac{(v-u)^{2}}{2 a}$

