Task. An object is dropped from a platform 100 feet high. Ignoring wind resistance, what will its speed be when it reaches the ground?

Solution. There is a gravitation force acting on the object. Therefore it moves with constant acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Since it was dropped, its initial velocity is zero. Therefore its height at time t is given by the formula:

$$
h(t)=h_{0}-\frac{g t^{2}}{2},
$$

where $h_{0}=100$ feet is the initial height. We should find t such that $h(t)=0$, that is

$$
\begin{gathered}
h_{0}-\frac{g t^{2}}{2}=0 \\
t^{2}=\frac{2 h_{0}}{g} \\
t=\sqrt{\frac{2 h_{0}}{g}} .
\end{gathered}
$$

Notice that

$$
1 \text { foot }=0.3048 \mathrm{~m},
$$

so

$$
h_{0}=100 \text { feet }=304.8 \mathrm{~m} .
$$

Therefore

$$
t=\sqrt{\frac{2 h_{0}}{g}}=\sqrt{\frac{2 * 304.8}{9.8}}=\sqrt{\frac{609.6}{9.8}}=\sqrt{62.204}=7.8870 \approx 7.9 \mathrm{~s} .
$$

Answer. 7.9 s .

