Task. A body covers 4 m in the 3 rd second and 12 m in the 5 th second. If the motion is uniformly accelerated, how far will it travel the next 3 second.

Solution. Let v be the initial velocity of the body and a be its acceleration. Then the distance covered by the body at time t is given by the following formula:

$$
d(t)=v t+\frac{g t^{2}}{2}
$$

We should find the distance covered by the body at next 3 seconds after 5 seconds, i.e. at time $t=5+3=8 \mathrm{~s}$.

By assumption

$$
d(3 s)=4 m
$$

and

$$
d(5 s)=12 \mathrm{~m} .
$$

Thus

$$
4=d(3)=v * 3+\frac{g * 3^{2}}{2}=3 v+4.5 g
$$

and

$$
12=d(5)=v * 5+\frac{g * 5^{2}}{2}=5 v+12.5 g
$$

So we obtain the following system of equations

$$
\left\{\begin{array} { r l }
{ 3 v + 4 . 5 g } & { = 4 } \\
{ 5 v + 1 2 . 5 g } & { = 1 2 }
\end{array} \Rightarrow \left\{\begin{array}{rl}
6 v+9 g & =8 \\
10 v+25 g & =24
\end{array}\right.\right.
$$

Multiplying both sides of the first equation by (-5), both sides of the second equation by 3 and adding them we obtain

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
-30 v-45 g=-40 \\
30 v+75 g=72
\end{array}\right. \\
-30 v-45 g+30 v+75 g=72-40 \\
30 g=32
\end{array}\right\} \begin{gathered}
g=\frac{32}{30}=\frac{16}{15} \approx 1.0667 \mathrm{~m} / \mathrm{s}^{2} .
\end{gathered}
$$

Therefore

$$
3 v=4-4.5 g
$$

and so

$$
v=\frac{4-4.5 g}{3}=\frac{4-\frac{9}{2} \cdot \frac{16}{15}}{3}=\frac{4-\frac{3 * 8}{5}}{3}=\frac{4-4.8}{3}=-\frac{0.8}{3}=-\frac{8}{30}=-\frac{4}{15} \approx-0.26667 \mathrm{~m} / \mathrm{s}
$$

Hence

$$
d(8)=-\frac{4}{15} * 8+\frac{16}{15} * \frac{8^{2}}{2}=-\frac{32}{15}+\frac{16 * 32}{15}=\frac{16 * 32-32}{15}=\frac{15 * 32}{15}=32 \mathrm{~m}
$$

Answer. 32 m .

