Task. A force $F_{1}=80 N$ extends a natural length $L=8 \mathrm{~m}$ by $\Delta L_{1}=0.4 \mathrm{~m}$. What will be the length of the spring when the applied force is $F_{2}=100 N$ ?

Solution. By Hooke's law the force $F$ needed to extend a spring $\Delta L$ is proportional to $\Delta L$ :

$$
F=k \Delta L
$$

where $k$ is a constant called stiffness of a spring.
In the first case

$$
\Delta L_{1}=0.4 \mathrm{~m}, \quad F_{1}=80 \mathrm{~N},
$$

whence

$$
F_{1}=k \Delta L_{1},
$$

and so

$$
k=\frac{F_{1}}{\Delta L_{1}}=\frac{80}{0.4}=200 \mathrm{~N} / \mathrm{m}
$$

Now apply the force $F_{2}=100 N$ and let $\Delta L_{2}$ be the extension of the length in this case. Then similarly,

$$
F_{2}=k \Delta L_{2},
$$

whence

$$
\Delta L_{2}=\frac{F_{2}}{k}=\frac{100}{200}=0.5 \mathrm{~m}
$$

Hence the length of the spring in the second case will be

$$
L_{2}=L+\Delta L_{2}=8+0.5=8.5 \mathrm{~m}
$$

Answer. 8.5 m .

