Initial velocity of a train is $35 \mathrm{~m} / \mathrm{s}$ and acceleration produced is $2 \mathrm{~m} / \mathrm{s}$ (square) in 6 seconds. What is its final velocity?

Solution.

$$
\begin{gathered}
v_{i}=35 \frac{\mathrm{~m}}{\mathrm{~s}}, a=2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, t=6 s ; \\
v_{f}-?
\end{gathered}
$$

The final velocity of the train moving with acceleration:

$$
v_{f}=v_{i}+a t
$$

v_{f} - the final velocity of the train;
v_{i} - the initial velocity of the train;
a - the acceleration of the train.

$$
v_{f}=35 \frac{\mathrm{~m}}{\mathrm{~s}}+2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 6 s=47 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer: The final velocity of the train is $47 \frac{\mathrm{~m}}{\mathrm{~s}}$.

