Question 31703

1. First, let us consider the case when the initial velocity is directed downwards. Let v_{0} denote the latter one. Hence, if vertical axis is directed upwards, the law of motion will be $h-v_{0} t_{1}-\frac{g t_{1}^{2}}{2}=0$ (knowing that t_{1} is given time).
2. Secondly, let us consider the case when the initial velocity is directed upwards. First, the body will move upwards until its velocity becomes zero. Let the time needed for this be t^{\prime} and the height above initial height be h_{1}. Then, for full stop $v=v_{0}-g t^{\prime}=0 \Rightarrow t^{\prime}=\frac{v_{0}}{g}$, and height h_{1} is $h_{1}=v_{0} t^{\prime}-g \frac{t^{\prime 2}}{2}=\frac{v_{0}^{2}}{2 g}$ (using previous formula for t^{\prime}). After reaching maximum height ($h+h_{1}$) and stop, body will move downwards with no initial velocity for some time $t^{\prime \prime}$. The latter one is $t^{\prime}=\sqrt{2 \frac{\left(h+h_{1}\right)}{g}}=\sqrt{\frac{2}{g}\left(h+\frac{v_{0}^{2}}{2 g}\right)}$.
Full time of motion in case of initial velocity directed upwards is $t_{2}=t^{\prime}+t^{\prime}=\frac{v_{0}}{g}+\sqrt{\frac{2}{g}\left(h+\frac{v_{0}^{2}}{2 g}\right)}$. In case of motion from height h with no initial velocity, time is $t=\sqrt{2 \frac{h}{g}}$.
From points 1 and 2 one has following equations:
a) $h-v_{0} t_{1}-\frac{g t_{1}^{2}}{2}=0$
b) $t_{2}=t^{\prime}+t^{\prime \prime}=\frac{v_{0}}{g}+\sqrt{\frac{2}{g}\left(h+\frac{v_{0}^{2}}{2 g}\right)}$

Let us solve b) for v_{0} and plug it into a).

$$
\frac{2}{g}\left(h+\frac{v_{0}^{2}}{2 g}\right)=t_{2}^{2}-2 t_{2} \frac{v_{0}}{g}+\frac{v_{0}^{2}}{g^{2}} \text { from where } v_{0}=\frac{g}{2 t_{2}}\left(t_{2}^{2}-\frac{2 h}{g}\right)
$$

Now, plug latter formula for v_{0} into a):

$$
h-\frac{g}{2 t_{2}}\left(t_{2}^{2}-\frac{2 h}{g}\right) t_{1}-\frac{g t_{1}^{2}}{2}=0 \quad, \text { from here } \quad h\left(\frac{t_{1}+t_{2}}{t_{2}}\right)=\frac{g t_{1}^{2}}{2}+\frac{g t_{1} t_{2}}{2}=\frac{g}{2}\left(t_{1}^{2}+t_{1} t_{2}\right) .
$$

Hence, $\quad h=\frac{g}{2}\left(\frac{t_{2}}{t_{1}+t_{2}}\right)\left(t_{1}^{2}+t_{1} t_{2}\right)=\frac{g}{2} \frac{\left(t_{2} t_{1}^{2}+t_{1} t_{2}^{2}\right)}{t_{1}+t_{2}}=\frac{g}{2} \frac{t_{1} t_{2}\left(t_{1}+t_{2}\right)}{t_{1}+t_{2}}=\frac{g}{2}\left(t_{1} t_{2}\right)$.
Finally, knowing that $t=\sqrt{2 \frac{h}{g}}$, obtain $t=\sqrt{t_{1} t_{2}}$.

