A bullet of mass 50 g moving with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$, strikes a wooden block and comes to rest after penetrating a distance of 2 cm in it. Calculate the retardation caused by the wooden block.

Coordinate for uniformly accelerated motion equals:

$$
l=v_{0} t-\frac{a t^{2}}{2}
$$

v_{0} - initial velocity of the bullet
a-deceleration
t - time
Velocity for uniformly accelerated motion equals:

$$
v=v_{0}-a t
$$

If bullet comes to rest: $v=0 \Rightarrow t=\frac{v_{0}}{a}$
Therefore, from the equation for coordinate:

$$
l=v_{0} \frac{v_{0}}{a}-\frac{a\left(\frac{v_{0}}{a}\right)^{2}}{2}=\frac{v_{0}^{2}}{2 a}
$$

deceleration equals:

$$
a=\frac{v_{0}^{2}}{2 l}=\left(100 \frac{m}{s}\right)^{2} / 2
$$

And, finally, retardation equals:

$$
F=m a=m \frac{v_{0}^{2}}{2 l}=0.05 \mathrm{~kg} * \frac{\left(100 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 * 0.02 \mathrm{~m}}=12500 \mathrm{~N}=12.5 \mathrm{kN}
$$

Answer: 12500 N

