a train starts its journey with constant acceleration alpha ,attains a velocity v and then moves with v for some distance and then deaccelerates at the rate of beta to come to rest .if the total length of the path covered is L, find out the total time interval of motion

1. Acceleration:
$v=\alpha t_{a}$
t_{a} - time of acceleration
$t_{a}=\frac{v}{\alpha}$
Distance travelled:
$l_{a}=\frac{\alpha t_{a}^{2}}{2}=\frac{v^{2}}{2 \alpha}$
2. Uniform motion:

Distance travelled:
$l_{u}=v * t_{u}$
t_{u} - time of uniform motion
3. Deceleration
$v=\beta t_{d}$
t_{d} - time of decceleration
$t_{d}=\frac{v}{\beta}$
Distance travelled:
$l_{d}=\frac{\beta t_{d}^{2}}{2}=\frac{v^{2}}{2 \beta}$
Total time equals:

$$
t=t_{a}+t_{u}+t_{d}=\frac{v}{\beta}+\frac{l_{u}}{v}+\frac{v}{\alpha}
$$

Total distance:
$l=l_{a}+l_{u}+l_{d}$

Therefore: $l_{u}=l-l_{a}-l_{d}=l-\frac{v^{2}}{2 \beta}-\frac{v^{2}}{2 \alpha}$

$$
t=\frac{v}{\beta}+\frac{l_{u}}{v}+\frac{v}{\alpha}=\frac{v}{\beta}+\frac{l-\frac{v^{2}}{2 \beta}-\frac{v^{2}}{2 \alpha}}{v}+\frac{v}{\alpha}=\frac{v}{2 \beta}+\frac{l}{v}+\frac{v}{2 \alpha}
$$

Answer: $t=\frac{v}{2 \beta}+\frac{l}{v}+\frac{v}{2 \alpha}$

