Task. The position vector of a particle is $r(t)=\left(t^{2}-1\right) i+2 t j$. How can I find out the trajectory of the particle in the XY-plane?

Solution. Let $x(t)=t^{2}-1$ and $y(t)=2 t$ be the coordinate functions of the vector, so

$$
r(t)=\left(t^{2}-1\right) i+2 t j=x(y) i+y(t) j
$$

Notice that we can express t via $y(t)$:

$$
y(t)=2 t,
$$

whence

$$
t=y / 2
$$

Substituting this formula into the equation of $x(t)$ we obtain

$$
\begin{gathered}
x=t^{2}-1 \\
x=(y / 2)^{2}-1 \\
x=\frac{y^{2}}{4}-1 \\
4 x=y^{2}-4 \\
y^{2}-4 x=4 .
\end{gathered}
$$

The trajectory of the particle is given by the following equation

$$
y^{2}-4 x=4 .
$$

