Neglecting air resistance, if a ball thrown $4.5 \mathrm{~m} / \mathrm{s}$ horizontally from a 94 m cliff, how far has the ball fallen after 2.7 seconds?

Solution:

Equation of motion of the ball along the X -axis:
$S=V_{x} t+\frac{g_{x} t^{2}}{2}, g_{x}-$ the projection of the gravitational acceleration on the X axis

$$
g_{x}=0, V_{x}=V, \quad S=V t=4.5 \frac{\mathrm{~m}}{\mathrm{~s}} * 2.7 \mathrm{~s}=12.15 \mathrm{~m}
$$

Equations of motion along the Y-axis:

$$
\begin{gathered}
h=V_{y} t+\frac{g_{y} t^{2}}{2}, g_{y}-\text { the projection of the gravitational acceleration on the } Y \text { axis } \\
g_{y}=g, V_{y}=0, \quad h=\frac{g t^{2}}{2}=\frac{9.8 \frac{\mathrm{~m}}{s^{2}} * 2.7 \mathrm{~s} * 2.7 \mathrm{~s}}{2}=35.721 \mathrm{~m}
\end{gathered}
$$

The distance from the point of throwing by the Pythagorean theorem:

$$
L=\sqrt{h^{2}+S^{2}}=37.73 \mathrm{~m}
$$

Distance above the ground: $k=H-h=94 m-35.721 m=58.279 m$
Answer: distance above the ground: $\mathrm{k}=58.279 \mathrm{~m}$;
distance from the point of throwing: $L=37.73 \mathrm{~m}$;
height of ball fall: $h=35.721 \mathrm{~m}$;
length of the path of the ball along the X axis: $S=12.15 \mathrm{~m}$.

