A sinusodal wave travels along with. The time for a particular point as move from maximum displacement to zero displacement is 178 ms . The wavelength of the wave is 1.38 m . Find the period ,the frequency and the speed of the wave

Solution:

Time at which the point moves from a position of amplitude in the position of the zero displacement is given in the condition: $t_{1}=178 \mathrm{~ms}$

We have harmonic oscillations (described by a sinusoid).
For reasons of symmetry of sinusoid: $t_{1}=t_{2}=t_{3}=t_{4}=178 \mathrm{~ms}$

Period T - the time at which point performs complete oscillation:

$$
T=t_{1}+t_{2}+t_{3}+t_{4}=4 * t_{1}=4 * 178 \mathrm{~ms}=712 \mathrm{~ms}
$$

Frequency \mathbf{n} - the number of oscillations per second

$$
n=\frac{1}{T}=\frac{1}{712 \mathrm{~ms}}=1.4044 \mathrm{~Hz}
$$

Wavelength - the distance which passes wave in one period:

$$
\begin{gathered}
\lambda=\vartheta * T, \quad \vartheta-\text { speed of the wave } \\
\vartheta=\frac{\lambda}{T}=\frac{1.38 \mathrm{~m}}{712 \mathrm{~ms}}=1.938 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: period T= 712 ms , frequency $\mathrm{n}=1.4044 \mathrm{~Hz}$, speed $\mathrm{V}=1.938 \mathrm{~m} / \mathrm{s}$

time

