a glass prism in the shape of a quarter-cylinder lies on a horizontal table. a uniform, horizontal light beam falls on its vertical plane surface, as shown in the figure. if the radius of the cylinder is $\mathrm{R}=5 \mathrm{~cm}$ and the refractive index of the glass is $\mathrm{n}=1.5$, where, on the table beyond the cylinder, will a path of light be found?

Solution

Referring to the ray diagram, we have, $\sin \theta c=\frac{1}{n}$ and
$\cos \theta c=\frac{R}{R+x}, \cos \theta c=\sqrt{1-(\sin \theta c)^{2}}=\sqrt{1-\frac{1}{n^{2}}}=\sqrt{1-\frac{1}{1.5^{2}}}=0.745$
giving $x=R\left(\frac{1}{0.745}-1\right)=5\left(\frac{1}{0.745}-1\right)=1.71 \mathrm{~cm}$.
Now consider the lower part of the cylinder as a planoconvex lens to get $f=2 R=10 \mathrm{~cm}$. Thus the path of light will be found between 1.71 cm and 10 cm beyond the cylinder.

Answer: between 1.71 cm and 10 cm beyond the cylinder.

