A particle is projected from a point A at an angle (Q) with the horizontal. At B it moves at right angle to its initial direction. Find time of Flight from A to B.

$\overrightarrow{v_{0}}$ - vector of initial velocity
\vec{v} - vector of current velocity
Suppose, at the time instant $t \overrightarrow{v_{0}}$ is perpendicular to \vec{v}. Then:
$\overrightarrow{v_{0}} * \vec{v}=0$
On the other hand:
$\vec{v}=\overrightarrow{v_{0}}+\vec{g} t$,
where \vec{g} - gravitational acceleration.
Therefore:
$\left(\overrightarrow{v_{0}}+\vec{g} t\right) * \overrightarrow{v_{0}}=0$
${\overrightarrow{v_{0}}}^{2}+\left(\vec{g} * \overrightarrow{v_{0}}\right) t=v_{0}^{2}+g v_{0} \cos (a) t=0$
where a - angle between \vec{g} and $\overrightarrow{\nu_{0}}, a=90+Q$
$v_{0}^{2}-g v_{0} \sin (Q) t=0$
$t=\frac{v_{0}}{g \sin (Q)}$
Answer: $t=\frac{v_{0}}{g \sin (Q)}$

