A wheel of radius 120 cm has two different marks on its rim. The distance along the rim between the mark is 40 cm . Find the angle subtended at the center of the wheel by the marks. Give your answer in radian, degrees and revolutions.

Solution

The distance along the rim between the mark:

$$
l=\alpha * R
$$

where α (in radians) is the angle subtended at the center of the wheel by the marks, R - a radius of the rim.

So $\alpha=\frac{l}{R}=\frac{40}{120}=\frac{1}{3} \approx 0.33$ radians .
$\alpha($ degrees $)=\alpha($ radians $) * \frac{360^{\circ}}{2 \pi}=\frac{1}{3} * \frac{360^{\circ}}{2 \pi}=19^{\circ}$.
$\alpha($ revolutions $)=\frac{\alpha(\text { radians })}{2 \pi}=\frac{1}{3} * \frac{1}{2 \pi}=0.05$ revolutions.
Answer: $0.33 \mathrm{rad} ; 19^{\circ}$; 0.05 rev.

