Question

two collinear shms, with amplitudes 5 cm and 12 cm are superposed, calculate the resultant amplitude when shm differ in phase by 60 degree

Solution

Equations of harmonic oscillations have the form:
$x_{1}=X_{1} \cdot \cos \omega t$ and $x_{2}=X_{2} \cdot \cos \left(\omega t+\varphi_{0}\right), X_{1}=12 \mathrm{~cm}, X_{2}=5 \mathrm{~cm}, \varphi_{0}=\pi / 3$.

As we can see from the vector diagram above, the resultant amplitude can be found as
$X^{2}=X_{1}^{2}+X_{2}^{2}+2 \cdot X_{1} \cdot X_{2} \cos \varphi_{0}=12^{2}+5^{2}+2 \cdot 12 \cdot 5 \cdot \cos \frac{\pi}{3}=229$.

Thus, the $X=\sqrt{229} \mathrm{~cm}$.
Answer: $\quad X=\sqrt{229} \mathrm{~cm}$.

