Task. If a force of $F=80 \mathrm{~N}$ extends a spring of natural length $L=8 \mathrm{~m}$ by $\Delta L=0.4 \mathrm{~m}$, what will be the length of the spring when the applied force is $F_{1}=100 \mathrm{~N}$.

Solution. Recall that Hooke's law claims that the force F needed to extend a spring by distance ΔL is proportional to ΔL :

$$
F=k \Delta L
$$

where k is a constant coefficient called stiffness of a spring.
In our case

$$
\Delta L=0.4 \mathrm{~m}, \quad F=80 \mathrm{~N}
$$

Suppose we apply the force $F_{1}=100 \mathrm{~N}$. Then

$$
F_{1}=k \Delta L_{2}
$$

whence

$$
k=\frac{F}{\Delta L}=\frac{F_{1}}{\Delta L_{1}},
$$

and therefore

$$
\Delta L_{1}=\frac{F_{1}}{F} \Delta L
$$

Hence the length L of the spring will be

$$
L=L_{0}+\Delta L_{1}=L_{0}+\frac{F_{1}}{F} \Delta L
$$

Substituting values we get:

$$
L=8+\frac{100}{80} \cdot 0.4=8+\frac{40}{80}=8.5 \mathrm{~m} .
$$

