Question \#31268, Physics, Other

A wire with resistance of 80Ω is drawn out through a die so that its new length is three times its original length. Find the resistance of the longer wire assuming that the resistivity and density of the material are unaffected by the drawing process.

Solution.

If the	density	of	the	material	is
unaffected by the drawing	process, then wire volume V	is			

$$
V=S \cdot l ;
$$

where \boldsymbol{l} - is wire length, m;

$$
S \text { - is the cross-sectional area, } \mathrm{m}^{2} \text {; }
$$

If final wire length l_{2} is three times its original length $l_{1}\left(l_{2}=3 l_{1}\right)$, then final crosssectional area S_{2} is:

$$
S_{2}=\frac{V}{l_{2}}=\frac{V}{3 l_{1}}=\frac{1}{3} S_{1}
$$

The wire resistance is:

$$
R=\rho \frac{l}{S}
$$

where ρ is the resistivity, Ω / m;
The final wire resistance is:

$$
R_{2}=\rho \frac{l_{2}}{s_{2}}=\rho \frac{3 l_{1}}{\frac{1}{3} S_{1}}=9 \rho \frac{l_{1}}{s_{1}}=9 R_{1}=9 \cdot 80=720 \Omega
$$

Answer: the resistance of the longer wire is 720Ω.

