Calculate the resistance of 180 m of silver wire having a cross section of $033 \mathrm{~mm} \wedge 2$. The resistivity of silver is $1.6 \times 10-8 \Omega \mathrm{~m}$
a. $112 \Omega$
b. $96 \Omega$
c. $146 \Omega$
d. $75 \Omega$

The resistance of a given object depends primarily on two factors: What material it is made of, and its shape. For a given material, the resistance is inversely proportional to the cross-sectional area. Also, for a given material, the resistance is proportional to the length. The resistance $R$ and conductance $G$ of a conductor of uniform cross section, therefore, can be computed as:
$R=\frac{\rho l}{S}$
where $\rho$ - resistivity of material, $l$ - length, $S$ - cross section.
Therefore:
$R=\frac{1.610^{-8} \Omega m * 180 \mathrm{~m}}{0.33 \mathrm{~mm}^{2}}=8.72 \Omega$
Answer: $R=8.72 \Omega$

