

Question #31258, Physics, Other

Which of the following is not true about the electric field intensity \vec{E} of a uniformly charged solid sphere?

- a. \vec{E} is maximum at the surface of the sphere
- b. \vec{E} is directly proportional to the distance from the centre of the sphere
- c. \vec{E} decreases as a square of the distance from the surface of the sphere
- d. \vec{E} decreases as a square of the distance from the centre of the sphere.

Solution.

Electric field intensity E_r of a uniformly charged solid sphere is directly proportional to the distance from the centre of the sphere, when this distance r less than sphere radius R (**b** is true).

$$E_r = \frac{1}{4\pi\epsilon_0} \frac{Q}{R^3} r$$

where Q - is the total charge.

Also E_r is maximum at the surface of the sphere (**a** is true).

And E_r decreases as a square of the distance from the surface of the sphere ($r > R$) - **c** is true;

$$E_r = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

But E_r not decreases as a square of the distance from the centre of the sphere, so **d** is not true.

Answer: d. E_r , decreases as a square of the distance from the centre of the sphere – **is not true.**