A gas occupies a certain volume at 27 degree Celsius. If it is heated at constant pressure, its volume is exactly doubled at a temperature of

Solution

Let's use the ideal gas law:

$$
P * V=v * R * T
$$

Where P is pressure of the gas, V is volume of the gas, T is temperature of the gas (in Kelvin), v is amount of substance of gas, R is the ideal gas constant.

Let assume $T_{0}=27^{\circ} C=(273+27) K=300 K$. As pressure P is constant, then

$$
2 * P * V=v * R * T_{1} \rightarrow T_{1}=\frac{2 * P * V}{v * R}=\frac{2 *(P * V)}{v * R}=\frac{2 * v * R * T_{0}}{v * R}=2 * T_{0} .
$$

So, the volume doubles when the temperature doubles. Here doubled temperature is

$$
T_{1}=2 * 300 K=600 K=(600-273)^{\circ} C=327^{\circ} C
$$

Answer: $327^{\circ} C$.

