a bus start from rest with an acceleration of $1 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. a man who is 48 meter behind the bus is moving with a uniform velocity of $10 \mathrm{~m} / \mathrm{s}$. then the minimum time after which the man will catch the bus?

Solution

The distance that man travelled (relative to the bus):

$$
S_{M a n}=S_{0}+v * t
$$

where $S_{0}=48 \mathrm{~m}, v=10 \frac{\mathrm{~m}}{\mathrm{~s}}$, t is the minimum time after which the man will catch the bus.
The distance that bus travelled:

$$
S_{B u s}=\frac{a t^{2}}{2}
$$

Where $a=1 \frac{m}{s^{2}}$, is the minimum time after which the man will catch the bus.
The distances of man and bus are equal to each other, because the man will catch the bus.
So

$$
S_{M a n}=S_{B u s} \leftrightarrow \frac{a t^{2}}{2}=S_{0}+v * t
$$

We have quadratic equation for t :

$$
\frac{1 * t^{2}}{2}=48+10 * t \rightarrow \frac{1}{2} t^{2}-10 * t-48=0 \rightarrow t=24 \mathrm{~s}
$$

Answer: 24s.

