Question 30758

The law of motion is as follows: $\quad v_{x}=v_{0 \mathrm{x}}=v_{0}$ (according to conditions of the task, object was dropped only with horizontal initial velocity, let us denote it v_{0}). For vertical part of velocity: $v_{y}=v_{0 \mathrm{y}}-g t=-g t$ (because $v_{0 \mathrm{y}}=0$).
Hence, horizontal distance, traveled by object is $S_{x}=v_{0} \cdot t$, from where $v_{0}=\frac{S_{x}}{t}\left(S_{x}=125 m\right)$.
Time might be found from vertical law of motion $\quad S_{y}=\frac{g t^{2}}{2} \Rightarrow t=\sqrt{\frac{2 S_{y}}{g}} \quad\left(\quad S_{y}=40 \mathrm{~m}\right)$.
Plugging the latter formula into formula for v_{0}, obtain $v_{0}=S_{x} \frac{\sqrt{g}}{\sqrt{2 S_{y}}}=43.8 \frac{\mathrm{~m}}{\mathrm{~s}}$.

