Solve.

Two ends of a train moving with a constant acceleration pass a certain point with velocities u and v. What is the velocity with which the middle point of the train passes the same point?

Solution.

Let P and Q be the two ends of the train and O is the midpoint of $P Q$. Let $P Q=L$ the length of the train.

When the end Q crosses a certain point say R, the velocity of every point of the train = velocity of $Q=u$.

Hence, at the instant, the velocity of $\mathrm{O}=$ velocity of $P=u$.

When the end P comes to R its velocity $=v$.
For the motion of P :
$v^{2}=u^{2}+2 a L$
where $a=$ const.acceleration
When the point O comes to R, its velocity w is given by
$w^{2}=u^{2}+2 a\left(\frac{L}{2}\right)=u^{2}+a L$
From (1) and (2):

$$
\begin{gathered}
a L=\frac{v^{2}-u^{2}}{2} \\
w^{2}=u^{2}+\left(\frac{v^{2}-u^{2}}{2}\right)=\frac{v^{2}+u^{2}}{2}
\end{gathered}
$$

Or

$$
w=\sqrt{\frac{v^{2}+u^{2}}{2}}
$$

Answer:

$$
w=\sqrt{\frac{v^{2}+u^{2}}{2}}
$$

