A ball is dropped from a height of 5 m onto a sandy floor and penetrates the sand up to 10 cm before coming to rest. Find the retardation of the ball in sand assuming it to be uniform.

Solution: In order to find retardation of ball in the sand, it is necessary to find the velocity that was before hit the sand. t1 - time that the ball flies before entering the sand, $\mathrm{H}(5 \mathrm{~m})$ - height from the sand surface, $\mathrm{h}(10 \mathrm{~cm}$) - distance which ball covered in the sand before stop.

The equation of motion for the ball relative to the X -axis before entering the sand:

$$
\begin{gathered}
H=\frac{g t_{1}^{2}}{2} ;\left(V_{\text {start }}=0\right) \\
t_{1}=\sqrt{\frac{2 H}{g}}
\end{gathered}
$$

The rate equation for the ball before entering the sand:

$$
V=g t_{1}=\sqrt{2 g H}(1)
$$

The equation of speed after entering the sand:
$0=V-a t_{2}, \quad t_{2}-$ time after which the ball stops completely

$$
\begin{equation*}
t_{2}=\frac{V}{a}=\frac{\sqrt{2 g H}}{a} \tag{2}
\end{equation*}
$$

The equation of motion for the ball after entering the sand:

$$
\begin{equation*}
h=V t_{2}-\frac{a t_{2}^{2}}{2} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (1) and (2) to (3): } 2 h=2 \sqrt{2 g H} \frac{\sqrt{2 g H}}{a}-\frac{2 g H}{a} \text {; } \\
& 2 h=\frac{2 g H}{a} \text {; } \\
& a=\frac{g H}{h} \text {. }
\end{aligned}
$$

Substitute the numerical values:
$a=\frac{9.8 \frac{m}{\sec ^{2}} * 5 m}{0.1 \mathrm{~m}}=490 \frac{\mathrm{~m}}{\sec ^{2}}$.
Answer: $490 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$.

