Task. A ball is dropped from a balloon going up at a speed of $7 \mathrm{~m} / \mathrm{sec}$. If the balloon was at a height $h_{0}=60 \mathrm{~m}$ at the time of dropping the ball, how long will the ball take to reach the ground?

Solution. There is a gravitation force acting on a ball so that it moves with a constant acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. The initial velocity of the ball is $v_{0}=-7 \mathrm{~m} / \mathrm{s}$, so it is opposite to the acceleration. Therefore the height of the ball at time t is given by the following formula:

$$
h(t)=h_{0}+v_{0} t-\frac{g t^{2}}{2}
$$

We should find time t when $h(t)=0$, so we obtain the following equation:

$$
\begin{gathered}
60+7 t-\frac{9.8 t^{2}}{2}=0 \\
4.9 t^{2}-7 t-60=0 \\
D=(-7)^{2}-4 * 4.9 *(-60)=1225=35^{2} \\
t_{1}=\frac{7+35}{2 * 4.9}=4.29 \mathrm{~s}, \quad t_{2}=\frac{7-35}{2 * 4.9}=-2.86 \mathrm{~s}<0 .
\end{gathered}
$$

Thus only the first solution is admissible, and so $t=4.29 \mathrm{~s}$.

