Question 30599

The dependence of resistance on temperature is linear. Hence, in general it might be expressed as $R = R_0(1 + \alpha t)$.

Using condition that $R=52.5 \Omega$, t=0C obtain $R_0=52.5 \Omega$.

Using the condition that
$$R=9.75$$
, $t=100C$ obtain $\alpha = \frac{((\frac{9.75}{52.5})-1)}{100} = -0.081\frac{1}{C}$.

Hence, for current case, R=52.5(1-0.0081 t).

Plugging
$$R=8.25\,\Omega$$
 into latter formula and solving for t obtain $t=\frac{(1-(\frac{8.25}{52.5}))}{0.0081}=104.06\,C$.