Question 30462

The car is moving with negative acceleration. Hence, the law for speed as a function of time is $v(t)=v_{0}-a t$, where v_{0} is initial velocity, and a is acceleration.
According to $2^{\text {nd }}$ Newton's law, acceleration is connected with force exerted on body by $a=\frac{F}{m}$. Hence, law of motion in terms of force is $v(t)=v_{0}-\frac{F}{m} t$. At the moment of stop $\quad v=0 \frac{m}{s}$ and time is $t=10 \mathrm{~s}$. Plugging these values into latter formula, obtain force applied by the brakes:

$$
0=15-\frac{F}{m} \cdot t \Rightarrow F=v_{0} \frac{m}{t}=\frac{15 \frac{\mathrm{~m}}{\mathrm{~s}}}{10 \frac{\mathrm{~m}}{\mathrm{~s}}} \cdot 480 \mathrm{~kg}=720 \mathrm{~N}
$$

