Question 30462

The car is moving with negative acceleration. Hence, the law for speed as a function of time is $v(t)=v_0-at$, where v_0 is initial velocity, and a is acceleration.

According to 2nd Newton's law, acceleration is connected with force exerted on body by $a = \frac{F}{m}$. Hence, law of motion in terms of force is $v(t) = v_0 - \frac{F}{m}t$. At the moment of stop $v = 0\frac{m}{s}$ and time is t = 10s. Plugging these values into latter formula, obtain force applied by the brakes:

$$0 = 15 - \frac{F}{m} \cdot t \Rightarrow F = v_0 \frac{m}{t} = \frac{15 \frac{m}{s}}{10 \frac{m}{s}} \cdot 480 \, kg = 720 \, N$$