Question 30456

For circular motion acceleration is calculated as $a=\frac{v^{2}}{R}$. The more radius is, the less the acceleration is. According to the conditions of the task, minimal radius of the curvature corresponds to $a_{1}=9 \mathrm{~g}\left(\mathrm{~g}=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$ (for higher values of radius, acceleration will be lower and human will be able to deal with it physically). From formula for acceleration obtain $R_{\text {min }}=\frac{v^{2}}{a_{1}}=\frac{v^{2}}{9 g} \approx 518.2 \mathrm{~m}$

