A log is floating downstream. How would you calculate the drag force acting on it?

Answer: There are two basic types of the log movement in the water.

1) if $\frac{v \cdot L \cdot \rho}{\mu}<10$, where v is the velocity of \log in the water, $\mathrm{m} / \mathrm{s} ; L$ is the length or width of the log, $\mathrm{m} ; \rho$ is the water density, $\mathrm{kg} / \mathrm{m}^{3} ; \mu$ is the viscosity of water, $\mathrm{Pa} \cdot \mathrm{s}$.

In such conditions the drag force can be calculated as $F=k \cdot \mu \cdot L \cdot v$, where k is a dimensionless coefficient, which depends from the shape and streamlining of the log.

For example, if the log is a sphere with diameter D, then $k=3 \pi \approx 9.42$, and $F=9.42 \cdot \mu \cdot D \cdot v$. As you see, in this case the drag force is directly proportional to the speed of the log, $F \propto v$.
2) if the \log moves in such conditions, that $\frac{v \cdot L \cdot \rho}{\mu}>100$, then the drag force can be calculated as $F=C \cdot A \cdot \frac{\rho \cdot v^{2}}{2}$, where A is the maximal value of cross-sectional area of the $\log , \mathrm{m}^{2} ; C$ is a dimensionless coefficient, which depends from the shape and streamlining of the log.

For example, if the log is a sphere with diameter D, then $k=0.44$, and $F=0.44 \cdot A \cdot \frac{\rho \cdot v^{2}}{2}=$ $=0.44 \cdot \frac{\pi \cdot D^{2}}{4} \cdot \frac{\rho \cdot v^{2}}{2}=0.173 \cdot \rho \cdot D^{2} \cdot v^{2}$.

As you see, in this case the drag force is directly proportional to the square of speed of the log, $F \propto v^{2}$.

