If the linear momentum of a body is increased by 50%, then the kinetic energy of that body increases by 1)225\% 2)25\% 3)100\% 4)125\%?

Solution.

The linear momentum is the product of mass m end velocity v of a body:

$$
p=m \cdot v ;
$$

So, if the linear momentum of a body is increased by 50%, then body velocity increases by 50% too, because mass is constant.

Write this as:

$$
v_{2}=1.5 v_{1}
$$

where v_{1} - initial velocity of a body;

$$
v_{2} \text { - finish velocity of a body; }
$$

The kinetic energy is:

$$
E=\frac{m v^{2}}{2}
$$

So, relation between finish and initial kinetic energy is:

$$
\frac{E_{2}}{E_{1}}=\frac{m v_{2}^{2}}{2} \cdot \frac{2}{m v_{1}^{2}}=\frac{v_{2}^{2}}{v_{1}^{2}}=\frac{\left(1.5 v_{1}\right)^{2}}{v_{1}^{2}}=\frac{2.25 v_{1}^{2}}{v_{1}^{2}}=2.25
$$

The kinetic energy of that body increases by $125 \%\left(E_{2}=2.25 E_{1} \rightarrow E_{2}-E_{1}=1.25 E_{1}\right)$
Answer: The kinetic energy of that body increases by $\mathbf{1 2 5 \%}$.

