Task. A freely falling covers 0.1 m in 0.1 sec and 0.2 m in next 0.1 sec . Find the value of acceleration due to gravity at the place.

Solution. Assume that the acceleration g due to gravity is constant at the place, so the object moves with constant acceleration. Let v be its initial velocity. Then the distance passed by time t is equal to

$$
h(t)=v t+\frac{g t^{2}}{2} .
$$

By assumption,

$$
h(0.1 \mathrm{sec})=0.1 \mathrm{~m} .
$$

Moreover, in next 0.1 sec ., that is at $t=0.1+0.1$ the distace was

$$
h(0.1+0.1)=h(0.2)=0.1+0.2=0.3
$$

So we get the following system of equations:

$$
\begin{array}{ll}
h(0.1)=0.1=v * 0.1+\frac{g * 0.1^{2}}{2}, & h(0.2)=0.3=v * 0.2+\frac{g * 0.2^{2}}{2} \\
0.1 v+0.005 g=0.1, & 0.2 v+0.02 g=0.3 . \\
0.2 v+0.01 g=0.2, & 0.2 v+0.02 g=0.3 .
\end{array}
$$

Subtracting left equation from the right one we get

$$
\begin{gathered}
0.2 v+0.02 g-0.2 v-0.01 g=0.3-0.2 \\
0.01 g=0.1 \\
g=\frac{0.1}{0.01}=10 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Answer. $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

