QUESTION:

Monochromatic light is used to illuminate a pair of narrow slits $\mathrm{d}=0.3 \mathrm{~mm}$ apart and the interference pattern is observed on a source $\mathrm{I}=0.91 \mathrm{~m}$ away. The second dark band appears 3.0 mm from the centre. What is the wavelength in metres?

SOLUTION:

The spacing Δx of the fringes at a distance l from the slits is given by $\Delta x=\frac{l \lambda}{d}$

As it can be seen from a picture above, the spacing between interference fringes is equal to the $\frac{3.0}{2}=1.5 \mathrm{~mm}$
So
$\lambda=\frac{\Delta x \cdot d}{l}$
$\lambda=\frac{1.5 \cdot 10^{-3} \cdot 0.3 \cdot 10^{-3}}{0.91}=495 \cdot 10^{-9} \mathrm{~m}=495 \mathrm{~nm}$
ANSWER:
$495 \cdot 10^{-9}$ meters

