

A jet aircraft is aimed south and travelling 851km/h. A wind blows the plane from 40 degrees N of E at 36km/h. What is the plane's resultant velocity?

Solution.

$$v_a = 851 \frac{\text{km}}{\text{h}}, v_w = 36 \frac{\text{km}}{\text{h}};$$

$$v - ?$$

v_a - the velocity of the aircraft.

v_w - the velocity of the wind.

v - the resultant velocity of the aircraft.

A wind blows the plane from 40 degrees N of E as on the diagram.

By the diagram:

An angle $\varphi = 90^\circ - 40^\circ = 50^\circ$.

$\varphi_1 = \varphi = 50^\circ$, as the angles between mutually parallel lines.

An angle $\alpha = 180^\circ - \varphi_1 = 180^\circ - 50^\circ = 130^\circ$.

$$\alpha = 130^\circ.$$

By the diagram there is a triangle with sides: v_a, v_w, v .

By Law of cosines:

$$v^2 = v_a^2 + v_w^2 - 2v_a v_w \cos\alpha.$$

The resultant velocity of the aircraft is:

$$v = \sqrt{v_a^2 + v_w^2 - 2v_a v_w \cos\alpha}.$$

$$v = \sqrt{\left(851 \frac{\text{km}}{\text{h}}\right)^2 + \left(36 \frac{\text{km}}{\text{h}}\right)^2 - 2 \cdot 851 \frac{\text{km}}{\text{h}} \cdot 36 \frac{\text{km}}{\text{h}} \cdot \cos(130^\circ)} = 874.6 \frac{\text{km}}{\text{h}}.$$

Answer: The resultant velocity of the aircraft is $v = 874.6 \frac{\text{km}}{\text{h}}$.