

A reservoir contains mercury up to a height of $h=10\text{cm}$. the atmospheric pressure at the surface of the mercury is equivalent to a pressure made by a column of mercury of height $H=75\text{cm}$. Calculate in Pa the total pressure exerted at a point in the bottom of the reservoir. Take $g=10\text{N/Kg}$ and density of mercury $P=13600\text{kg/m cubed}$.

Solution.

$$h = 10\text{cm} = 0.10\text{m}, H = 75\text{cm} = 0.75\text{m}, g = 10 \frac{\text{N}}{\text{kg}}, \rho = 13600 \frac{\text{kg}}{\text{m}^3};$$

$$P - ?$$

The total pressure exerted at a point in the bottom of the reservoir is:

$$p = p_0 + p_m;$$

p_0 – the atmospheric pressure;

p_m – the pressure made by a column of mercury in the reservoir.

$$p_m = \rho gh.$$

$p_0 = \rho gH$, because the atmospheric pressure at the surface of the mercury is equivalent to a pressure made by a column of mercury of height $H = 75\text{cm}$.

$$p = \rho gh + \rho gH;$$

The total pressure exerted at a point in the bottom of the reservoir is:

$$p = \rho g(h + H).$$

$$p = 13600 \frac{\text{kg}}{\text{m}^3} \cdot 10 \frac{\text{N}}{\text{kg}} (0.10\text{m} + 0.75\text{m}) = 115600\text{Pa}.$$

Answer: The total pressure exerted at a point in the bottom of the reservoir is $p = 115600\text{Pa}$.