

540 calories of heat is required to vaporize 1 gm of water at 100°C. Determine the entropy change involved in vaporizing 5 gm of water?

Solution.

$$L = 540 \frac{\text{cal}}{\text{g}}, t = 100^\circ\text{C}, m = 5\text{g} = 0.005\text{kg};$$

$$\Delta S - ?$$

$L = 540 \frac{\text{cal}}{\text{g}}$ - the latent heat of vaporize of water.

Converting the latent heat to joules per grams:

$$1 \text{ cal} = 4.1868\text{J};$$

$$L = 540 \frac{\text{cal}}{\text{g}} (4.1868\text{J}) = 2260.872 \frac{\text{J}}{\text{g}}$$

Converting the latent heat to joules per kilograms:

$$L = 2260.872 \frac{\text{J}}{\text{g}} \left(\frac{1000\text{g}}{1\text{kg}} \right) = 2260872 \frac{\text{J}}{\text{kg}}$$

$$L = 2260872 \frac{\text{J}}{\text{kg}}.$$

The entropy change is:

$$\Delta S = \frac{\Delta Q}{T}.$$

ΔQ – the heat that is required to vaporize 5 g of water.

$$\Delta Q = mL.$$

Thermodynamic temperature:

$$T = (t + 273^\circ\text{C})K;$$

$$t = 100^\circ\text{C};$$

$$T = (100^\circ\text{C} + 273^\circ\text{C})K;$$

$$T = 373K.$$

$$\Delta S = \frac{mL}{T}.$$

$$\Delta S = \frac{0.005\text{kg} \cdot 2260872 \frac{\text{J}}{\text{kg}}}{373K} = 30.3 \frac{\text{J}}{\text{K}}$$

Answer: The entropy change is $\Delta S = 30.3 \frac{\text{J}}{\text{K}}$.