

A particle is acted upon by 3 forces in one plane equal to 2, $2(2)^{1/2}$, 1 N respectively. First is horizontal, second acts at 45 degree to the horizontal and 3rd is vertical. What is the magnitude of resultant force?

Solution:

To find resultant force we should add all forces, which are acting on the body.

Firstly, we should add F_2 and F_3 . To do that we need to project F_3 on the axis X:

$$F_x = F_3 \cdot \cos 45^\circ = 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 2 \text{ N}$$

So the sum is:

$$F_{2,3} = F_2 + F_3 = 2 + 2 = 4 \text{ N}$$

Secondly, we should add F_1 and F_3 . Now we project F_3 on the axis Y:

$$F_y = F_3 \cdot \sin 45^\circ = 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 2 \text{ N}$$

So the sum is:

$$F_{1,3} = F_1 + F_3 = 1 + 2 = 3 \text{ N}$$

To find the magnitude of resultant force we should add $F_{2,3}$ and $F_{1,3}$. To do that just use Pythagoras' theorem:

$$F_{\text{resultant}} = \sqrt{F_{1,3}^2 + F_{2,3}^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \text{ N}$$

Answer: $F_{\text{res}} = 5$