

Two rods of equal mass m and length L lie along the x axis and y axis with their centers at the origin. What is the moment of inertia of both about the line $x=y$?

Solution.

$$m, L;$$

$$I-?$$

The moment of inertia of both rods about the line $y = x$:

$$I = 2I_0;$$

I_0 – the moment of inertia of one rod about the line $y = x$.

The mass of the particle of the rod with the length dx :

$$dm = \frac{m}{L} dx;$$

The moment of inertia of the particle of the rod with the length dx about the line $y = x$:

$$dI_0 = dm r^2;$$

$$r^2 = x^2 \sin^2 \alpha;$$

$$dI_0 = \frac{m}{L} dx x^2 \sin^2 \alpha.$$

The moment of inertia of one rod about the line $y = x$:

$$I_0 = 2 \int_0^{\frac{m}{2}} dm r^2 = \frac{2m}{L} \sin^2 \alpha \int_0^{\frac{L}{2}} x^2 dx = \frac{2m}{L} \sin^2(\alpha) \frac{1}{3} \left(\frac{L}{2}\right)^3 = \frac{1}{12} mL^2 \sin^2 \alpha.$$

The moment of inertia of both rods about the line $y = x$:

$$I = 2 \frac{1}{12} mL^2 \sin^2 \alpha = \frac{1}{6} mL^2 \sin^2 \alpha.$$

By the diagram:

$$y = x;$$

$$\frac{y}{x} = 1;$$

$$\frac{y}{x} = \tan \alpha;$$

$$\tan \alpha = 1;$$

$$\alpha = 45^\circ.$$

$$I = \frac{1}{6} mL^2 \sin^2(45^\circ).$$

Answer: The moment of inertia of both rods about the line $y = x$ is $I = \frac{1}{6} mL^2 \sin^2(45^\circ)$.