

Calculate the entropy change for 2 mole of ice. Freezing point of water is 273 k and molar enthalpy for fusion is 6 KJ Mole⁻¹.

Entropy is a mathematically-defined thermodynamic quantity that helps to account for the flow of energy through a thermodynamic process. Entropy was originally defined for a thermodynamically reversible process as:

$$\Delta S = \int \frac{dQ_{rev}}{T}$$

where the uniform temperature (T) of a closed system is divided into an incremental reversible transfer of heat energy into that system (dQ_{rev}).

Therefore:

$$\Delta S = \int \frac{dQ}{273\text{ K}} = \frac{Lv}{273\text{ K}}$$

L - enthalpy for fusion

v - amount of ice

$$\Delta S = \frac{2\text{mole} \times \frac{6\text{KJ}}{\text{mole}}}{273\text{ K}} = \frac{12\text{KJ}}{273\text{K}} = 44 \frac{\text{J}}{\text{K}}$$

Answer: $\Delta S = 44 \frac{\text{J}}{\text{K}}$